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ABSTRACT
Many flow computation problems are performed in the present time for several
real-life cases and/or research purposes. However, in most of these computations there
is always a tendency from engineers and researchers to increase the accuracy of the
solutions obtained. Increasing the accuracy of such computations could be obtained by
many means, among them is to refine the computational grid during the solution
process. In order to automate this process, an ancillary algorithm must be incorporated
into the flow solver in such a way that a search process can be carried out to identify
those regions of high gradients. This presumes that the search process will include all of
the computational cells and accordingly investigating the predesigned adaptation
sensors for a possible nomination of a particular cell for refinement. In the present work
the Daubechies wavelet transform is incorporated in an in—house made unstructured
Cartesian grid generator and flow solver. The details of the Daubechies wavelet
algorithm are demonstrated and the application of the adaptation criteria is carried out
only on the wavelet function instead of applying it on the whole sequence of adaptation
sensors. Case studies for verification purposes are carried out.

KEYWORDS: Daubechies wavelets; Adaptation sensors; Grid adaptation;
Unstructured cartesian grid.

INTRODUCTION
It is well known that the accuracy of the obtained solution depends on the grid
size, especially; in regions of high gradients. Usually an ancillary algorithm is included
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as an optional mechanism that can be switched on whenever needed. This algorithm is
composed of two main processes, the first process is the computations of the adaptation
sensors, and the second process is comparing each of the computed sensors with its
respective threshold and consecutively either tagging the cell for refinement if a sensor's
absolute value is greater than its respective threshold or leaving the cell without
refinement if a sensor's absolute value is smaller than its respective threshold. As the
reader can conclude, the second process is in essence a search process for those cells
that must be refined. This search process is a time consuming process and lends itself to
optimization through the employment of a wavelet transform. Wavelet transform
compresses a given data set by splitting it up into a low resolution part (scale) and a
high resolution part (detail). The wavelet function (the detail) is in our case the
important criterion since it represents the amplitude of the difference between the given
data. Hence the search process can be reduced by searching only the wavelet function
instead of searching the whole data set. Form the many wavelet functions available, the
Daubechies’ wavelet of four data point window (D4 wavelet) was employed in this
work since it is better suited to deal with general applications [1].

MATHEMATICAL MODEL
For an inviscid, unsteady compressible, and two dimensional flows with both
mass diffusion and thermal conductivity are neglected, the conservation laws are:

Continuity equation:

0 0 o(pV
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ot ox oy

Momentum equation:
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Energy equation:
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Where p is the fluid density, » is the fluid velocity in x-direction, V' is the fluid

velocity in y-direction, p is the pressure and e is the total energy. One more equation

is needed in order to have a number of equations that is equal to the number of
unknowns (p,u,V,p,T,and e). Using the thermodynamic relation ¢ - r/(y - 1)

and the definition of the specific internal energy « = ¢, 7, the equation of state can be

reformulated to relate the pressure p to the conservative variable p e as:
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Equation (1) to (5) can be rewritten in a dimensionless compact form as:
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The dimensionless variables are defined as shown in the nomenclature. It is worth
noting here that the governing equations in the dimensionless form are similar to those
that are in dimensional form, so for reason of simplicity the asterisk will be dropped
from now and as this text goes on.

Initial and boundary conditions

The governing equation, equation (6), is a partial differential equation with both
time and space derivatives and thus requires both initial and boundary conditions.
Specifying the initial conditions is a trivial task since the flow can be assumed to be
parallel flow at the start of calculation. This is a conventional approach which is used
for the solution of inviscid flows, for instance see [2] and [3]. The boundary conditions,
on the other side, are classified into two types: Far-field boundary conditions and fluid-
body boundary conditions. The far-field boundary conditions are based on the method
of characteristics, see [4], and summarized as follows:

- Subsonic flow

T
- . Peg 1 2
anﬂow = (pooa pooVooa + _p(x)V j

(7)
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- Supersonic flow
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The fluid-body boundary conditions for an inviscid flow at the wall are
extrapolated from the computational domain. In other words, the flow properties except
the velocity are all extrapolated from the nearest flow cell. With respect to the velocity,
for a nonporous wall, there can be no mass flow into or out of the wall this means that
the flow velocity vector immediately adjacent to the wall must be tangent to the wall. If
n is a unit vector at a point on the surface of the wall, the velocity at the wall can be
given as:

Po=V 7). 9)

sc
Where Vg, is the velocity at the cut surface and I7fc is the velocity of the nearest flow

cell.

METHOD OF SOLUTION

The system of the conservation equations, in vector compact form equations (6),
comprise a set of nonlinear partial differential equations containing both space and time
derivatives. The spatial derivatives will be discretized using an upwind-high resolution
scheme, namely the Advection Upstream Splitting Method (AUSM scheme), see [5].
The time derivatives, on the other hand, will be discretized using a five stage Runge-
Kutta method.

Discretization of the Convective Terms, the AUSM Scheme

The AUSM scheme is one of several available upwind schemes that have the
advantage of simplicity in programming without loosing the high accuracy. In order to
explain this scheme, the flux E in equation (6) will be taken as an example. The flux in
the y-direction will be treated similarly. The first step in this scheme is to split the flux

E into convective and pressure terms, and a cell interface velocity uy/2 1s introduced
which is used later to identify the upstream (upwind) direction, that is;

o)
: _
~ P, + P
E = ”1/2 p; + L 0 R (10)
el
pH 0

The interface velocity is given by:

uy/y =dap/p My (11)
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Where a L/R is the sound speed at the left or right side with respect to the cell face. The

decision to take either the left or the right value is taken according to the upstream
direction. Mathematically, this can be written as:

(')L ifuy, <0
(-)% 1), if”//j » (12)

Substituting equation (11) into equation (10) leads to:

pa 0
N _
_ P, + P
E=M | 7" +| L TR (13)
paV 0
Pal | L

The convective interface Mach number M, /2 18 defined by combining the wave
speed of left and right running waves, that is;

My, =M, + Mg (14)

In defining the split Mach number, M; and My, Liou and Steffen [5] have provided a

second degree polynomial to be used if the flow is subsonic and a first degree
polynomial if the flow is supersonic, that is;

. +—( L/R—1)2 ifML/R‘Sl
Mip/r = (15)

é(ML/R i‘ML/R‘) if ML/R‘>1

The pressure part of the flux E is calculated similarly by two polynomials provided by
[5] as:

-

if(Ml/R i1)2(2iM]/R)

ML/R <1
f/R =) (16)
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\

It should be noted here that the pressure term of the flux does not undergo any
upwinding as it is clear from equation (13). This is expected because pressure waves
can travel in all directions.

Discretization of the Unsteady Terms (Runge-Kutta method)

The discretization of the unsteady terms can be performed using either an explicit
or an implicit time integration scheme. In order to avoid the greater memory
requirement of the implicit scheme an explicit five stage Runge-Kutta integration
scheme of the following form is selected:
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The values of the coefficients «q,,5 are given, as in [1], by:
0{1=0.059 , ap =0.14 , 03 =0.273, oy =0.5 ,and as =1.

The time step can be computed by the procedure given by [6] as:
1 1 1

_——=——
At Aty Ay,
where:
CFL* Ax CFL*A
Aty =——F— and Aty:—y
|u|+a |V|+a

Here CFL is the Courant-Fredrich-Levy number that has a value of 1.0 which is
normally recommended for explicit schemes.

Adaptation sensors and Daubechies wavelet

The adaptation sensors that are most commonly used in inviscid flow
computations are: The relative change in the density, the relative change in the total
pressure, and the relative change in the magnitude of the velocity vector, these sensors
are summarized as:

_bp_ AP Al

= , = Lo s, = 17
1 p 2 Pt 3 |V | ( )
where the total pressure P, is defined as :
/4
-1 71
P= P[%MZ +1T (18)

A widely used approach to calculate the refinement threshold is to employ the
standard deviation of the data together with the mean value. That is, to set the
refinement threshold to some fraction of a standard deviation above the mean value of
the data distribution [7-9]. Using the mean value of the data together with the standard
deviation, the refinement threshold can be written as:
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Threshold = Mean —vy .o (19)

Where Mean is the mean value of data, o is the standard deviation of the data, and y is

a factor whose value is given by [9] as 0.5. Another simpler yet faster approach to
compute the threshold was used in this work that was originally introduced by [10] who
employed the Median of the data. The formula suggested by [10] is:

Threshold = Mean (20)
0.6745

Where the Median is the statistical median of the data, and the factor 0.6745 rescales the
numerator so that the threshold is also suitable estimator for the standard deviation. The
D4 wavelet has the following form:

SCL, = a,hy + ah, + a,h, + ah, (21)
DTL, = ayg, + a,g, + a,g, + a,g; (22)

Where the a;, i=0,...,3 are the values of the S; for each of the four cells included in the
wavelet window. The SCL; is the scale of the data at this data range, and DTL; is the
detail or the wavelet function. The wavelet coefficients 4y

_1+\/§
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(23)
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The numerical algorithm of the adaptation process proceeds as the follows: The
variables in equation (17) are calculated and plugged into the wavelet algorithm,
equations (21) and (22), that in turn compress the data by splitting it into a sequence of
scales and sequence of details. This step is the main task performed by the wavelet
transform algorithm. Only the sequence of the details is used in equation (20) to
calculate the threshold for each sensor. Then, the detail of each sensor is compared with
the corresponding threshold for every flow cell and the cell is tagged for refinement
whenever a detail of the sensors is greater than its threshold.

RESULTS AND DISCUSSIONS
In this paper, an open source Cartesian grid generator and flow solver' which is
beefed up with an algorithm for performing solution—based grid adaptation was

! The CFS; (C)artesian (F)low (S)olver, is an open source Cartesian grid generator and flow solver created and developed by the
first author.
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carefully studied in order to gain an in—depth sight of the solution-based grid adaptation
process. To verify and evaluate the efficiency of the algorithm two test cases were
selected. These two test cases involve the inviscid flow past the well-known
NACAO0012 airfoil [11]. The program was run for both test cases with the solution-
based grid adaptation option switched on. It should be noted here that the number of
grid adaptations was restricted to two times only. This was done in order to keep the
computational time in reasonable range, also the increase of the obtained accuracy-when
more grid adaptations is performed- was not worthy the resulting very high number of
emerging cut and flow cells.

The first test case is the computation of the flow past the previously mentioned
airfoil with a free stream Mach number of 0.85 and an angle of attack of 1.0 degree. The
second test case is similar to the first with the exception that its free stream Mach
number is 1.2 and its angle of attack is zero. The first case involves two attached shock
waves; a strong one on the upper side of the airfoil, and a weaker one on the lower side
of the airfoil, while the second test case is characterized by a detached shock wave in
front of the airfoil, and two attached shock waves emanating from the trailing edge of
the airfoil.

Figurel: The solution-base adapted grid for the first test case

As seen in Figure (1), the grid for the first test case was adapted at the regions of
high gradients, that is; at the leading edge in vicinity of the stagnation point as well as at
the two attached shock waves.

M
1.32671
1.23843
1.15015
1.08187
0073585
0.885304
0.797023
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Figure 2: The Mach number distribution for the first test case
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Figure 3: The density distribution for the first test case

Figures (2) and (3) show the Mach number distribution and the density
distribution for the first test case, respectively. The high resolution obtained here,
especially near the shock waves, is of course due to the grid adaptation (grid
refinement) at these regions.

Figure 4: The solution-base adapted grid for the second test case

Figure (4) shows that the built -in sensors that were introduced in the introduction,
have captured the important flow features of the second test case successfully. In other
words, the sensors have successfully captured the detached shock wave and the two
attached shock waves as well as the stagnation point.
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Figure 6: The density distribution for the second test case

Figures (5) and (6) show the Mach number and density distribution for the second
test case, respectively. The very good resolution obtained, especially in the case of the
detached shock wave is again related to grid adaptation. This high resolution was not
obtained when the same test case was carried out by [12], since they have deactivated
the solution -based grid adaptation option in their calculations.

CONCLUSIONS

The Adaptation sensors that were incorporated in the solution based grid
adaptation algorithm were successful in locating the high gradient regions in the
computational domain; however, the used adaptation sensors were selected for
computations of inviscid flow calculations. For viscous flow calculations, another
sensor(s) should be considered. The Daubechies wavelet has reduced the search process
to include only the detail of the given data instead of applying the search process on the
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whole range of the given data, and this reduction has not affected the accuracy of the
search process.
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NOMENCLATURE

Latin

a speed of sound, m/s

C, specific heat at constant volume, kJ/(kg K)

c Chord length, m

cp Coefficient of pressure

e

*
e

Specific total energy, kJ/kg
Dimensionless specific total energy e/ ag
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Ly,L) Lengths of the computational domain in x and y directions, m

M Mach number
ny,ny, Number of cells in x and y directions
P Pressure, kPa
P Dimensionless pressure P/(poag)
R Gas constant, kJ/(kg K)
T Temperature, K
T Dimensionless temperature 7/7T,,
t Time, s

* . . . t-ag
t Dimensionless time

C

u Component of velocity vector in x direction, m/s
i Specific internal energy, kJ/kg
u Dimensionless component of velocity vector in x direction u/a,
Vv Velocity vector

14 Component of velocity vector in y direction, m/s
v Dimensionless component of velocity vector in y direction V' /a,
x Horizontal coordinate, m

Vertical coordinate, m

Greek
) Density, kg/m’
o~ Dimensionless density p/p,
0 Angle of attack, radian
v specific heat ratio
Subscripts
o Stagnation condition
© Free stream value
fe The nearest flow cell to the cut surface
cd Computational domain
sc Cut surface
Superscripts
* Dimensionless variables
" Solution at time level n
n+1

Solution at time level n+1
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